In vivo targeted delivery of large payloads with an ultrasound clinical scanner.

نویسندگان

  • Olivier Couture
  • Alan Urban
  • Alice Bretagne
  • Lucie Martinez
  • Mickael Tanter
  • Patrick Tabeling
چکیده

PURPOSE Performing drug-delivery with an ultrasonic imaging scanner in situ could drastically simplify treatment and improve its specificity. Our objective is to deliver large amounts of an encapsulated agent in vivo using a clinical ultrasound scanner with a millimetric resolution. This study describes the encapsulation of fluorescein within ultrasound-inducible composite droplets and its targeted release in predefined zones in the liver of rats. METHODS An aqueous solution of fluorescein was encapsulated within perfluorocarbon liquid in 4 μm monodisperse droplets using a microfluidic system. The agent was then injected within the femoral vein of 12 rats. After exploratory ultrasound imaging, the sonographer defined five zones in the liver and a release sequence was initiated on the same apparatus. The surface of the liver was observed under fluorescence macroscopy and intraoperative fluorescence camera in vivo, before liver samples were sliced for pathology. RESULTS Following the conversion of the droplets, a 25 dB increase in contrast was observed in the zones selected by the sonographer. These hyperechoic regions were colocalized with the bright fluorescent spots observed on the surface of the liver. A minimum peak-negative pressure of 2.6 MPa, which is within regulations for imaging pulses, was required for the delivery of the content of the droplets. The tissue and cellular structures were not affected by the exposure to the release sequence. CONCLUSIONS Since composite droplets can carry various therapeutic and imaging agents, they could deliver such agents specifically in any organ accessible to ultrasound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of CdO/GrO nanolayer for in vivo imaging

Objective(s): Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity. Nanoparticles have enabled significant advances in pre-clinical cancer research as drug delivery vectors. Inorganic nanoparticles such as CdO/GrO nanoparticles have novel optical properties that can be used to optimize the signal-to-background ratio. This paper rep...

متن کامل

Pectin Film Coated Pellets for Colon-targeted Delivery of Budesonide: In-vitro/in-vivo Evaluation in Induced Ulcerative Colitis in Rat

Abstract The main objective of this study was to prepare colon-specific pellets of budesonide using pectin as film coating.  Pellet cores of budesonide were prepared by extrusion / spheronization technique. Pectin, in different ratios was combined with Eudragit RS30D, Eudragit NE30D or Surelease to produce film coating. The dissolution profiles of pectin coated pellets were investigated in pH o...

متن کامل

Docetaxel delivery using folate-targeted liposomes: in vitro and in vivo studies

Objective(s): Folate-targeted liposomes have been well considered in folate receptor (FR) overexpressing cells including MCF-7 and 4T1 cells in vitro and in vivo. The objective of this study is to design an optimum folate targeted liposomal formulations which show the best liposome cell uptake to tumor cells.Material and Methods: In this study, we prepared and characterized different targ...

متن کامل

Pectin Film Coated Pellets for Colon-targeted Delivery of Budesonide: In-vitro/in-vivo Evaluation in Induced Ulcerative Colitis in Rat

Abstract The main objective of this study was to prepare colon-specific pellets of budesonide using pectin as film coating.  Pellet cores of budesonide were prepared by extrusion / spheronization technique. Pectin, in different ratios was combined with Eudragit RS30D, Eudragit NE30D or Surelease to produce film coating. The dissolution profiles of pectin coated pellets were investigated in pH o...

متن کامل

Pluronic based nano-delivery systems; Prospective warrior in war against cancer

Pluronic based nano-particulate systems are innovative platforms for delivery of anti-cancer agents. These systems due to their pharmacological properties and suitable physicochemical characteristics are great opportunity for development cancer therapeutics. This mini-review tries to provide a more detailed overview on the currently available pluronic based drug delivery systems. In the section...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 39 8  شماره 

صفحات  -

تاریخ انتشار 2012